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Introduction by the Guest Editor

Semidefinite programming (SDP) has been called
“linear programming for the year 2000”, and has
been one of the most popular research areas in opti-
mization in the last ten years. One of the exiting new

applications of SDP is to obtain convex relaxations
of polynomial optimization problems.

This issue of SIAG/OPT Views-and-News in-
cludes two expository papers on the underlying
methodology, as well as a case study in control the-
ory. In particular:

• Lasserre shows how to obtain a hierarchy of
SDP relaxations of polynomial optimization
problems via the theory of moment matrices;

• Parrilo explains the dual approach, which relies
on the theory of positive polynomials;

• Henrion and Ghildiyal show how to apply the
SDP methodology to a problem in control the-
ory, namely how to design a robust H∞ con-
troller of fixed order for the inverted pendulum.

Etienne de Klerk, October 11, 2004.

SDP-Relaxations for Polynomial
Programming

Jean B. Lasserre
LAAS-CNRS

7 Avenue du Colonel Roche, 31077 Toulouse,

France (lasserre@laas.fr).

Abstract: We briefly describe a recent technique
to solve polynomial programming problems, which
uses algebraic representation theorems for polyno-
mials, positive on a compact set.

1. Introduction

In Nonlinear Programming (NLP), one handles func-
tions that are not necessarily polynomials, and,
therefore, basic concepts, tools and techniques are
usually borrowed from real and functional analysis
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as well as standard linear algebra, rather than com-
mutative algebra and algebraic geometry. As under-
lined in Wright [27], Linear Programming (LP) was
an exception, and until the interior points revolu-
tion, LP could be taught from a purely algebraic and
geometric point of view, and completely separated
from NLP. In counterpart to the large spectrum of
NLP problems with say, continuous functions, and
with the exception of convex problems, one is usu-
ally concerned with only local optimality conditions
and local search algorithms.

If one is interested in the global optimum, then ob-
serve that the NLP problem P→f∗ := minx∈K f(x)
has the two following equivalent formulations

f∗ = min
µ

{∫

Rn

f dµ | µ(K) = 1; µ(Rn \K) = 0
}

(1)
where the minimization is over the set of measures
µ on Rn, and

f∗ = max
λ∈R

{λ | f − λ ≥ 0 on K}. (2)

Of course, the LP (1) and its dual (2) are just a
rephrasing of P and are useless in general, unless one
knows either (a) how to evaluate

∫
f dµ efficiently

and characterize measures with support on K, or (b),
characterize functions that are nonnegative on K.

This is precisely the case for the class of NLP prob-
lems

P → f∗ = min{f(x) | gi(x) ≥ 0, i = 1, . . . , m}
(3)

with polynomial constraints and criterion, that we
call Polynomial Programming (PP) problems. That
is, {f, {gi}m

i=1} ⊂ R[x1, . . . , xn] and K ⊂ Rn is the
semi-algebraic set

K := {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . , m}. (4)

(A semi-algebraic set of Rn is a set defined by
polynomial inequalities.) Using recent results from
(real) algebraic geometry, one may provide a new
paradigm for PP problems, based on a sequence of
convex SDP-relaxations (of increasing size), whose
associated monotone sequence of optimal values con-
verges to f∗ under fairly weak assumptions. This
new framework is indeed realistic because of re-
cent progress in Semidefinite Programming (SDP)

which makes those SDP-relaxations practically im-
plementable. The reader should keep in mind that
most interesting PP problems are NP-hard. How-
ever, the above mentioned SDP-relaxations provide
a monotone nondecreasing sequence of lower bounds
and very often, f∗ is actually obtained early in the
sequence. Despite this appealing feature, and in
view of the present status of SDP (still at its early
stage), one is currently limited in the size of PP prob-
lems that can be handled so far.

In our mind, this new approach is particularly ap-
pealing for the three main reasons below, to be de-
veloped later.

(a) Generality: The class of PP problems is very
large and encompasses many interesting applica-
tions. For instance, nonconvex quadratic problems
and Mixed-Integer Programming (MIP) problems
are particular PP problems. The feasible set K nei-
ther needs to be connected nor continuous, as it
can be any semi-algebraic set represented by finitely
many polynomial inequalities.

(b) Global optimality conditions: Putinar, Jacobi
and Prestel’s refinement of Schmüdgen’s Positivstel-
lensatz theorem on the representation of polynomi-
als positive on a compact set, is nothing less than
the global optimality conditions analogue for PP of
the celebrated Karush-Kuhn-Tucker local optimality
conditions for NLP. In addition, the algebraic point
of view (2) of positive polynomials has a dual func-
tional analysis point of view (1), namely the theory
of moments.

(c) The tool: SDP is the appropriate tool that
fits a certain representation of positive polynomi-
als (algebraic point of view) and its dual theory of
moments (functional analysis) mentioned in (b). It
is indeed a remarkable fact that the primal SDP-
relaxations have a natural interpretation in the the-
ory of moments, whereas the dual SDP-relaxations
also have a natural interpretation in the representa-
tion theory (algebraic point of view).

This approach initiated by Shor [23] and later by
Lasserre [11, 12], Nesterov [16], Parrilo [17], has been
implemented in the two software packages Glop-
tiPoly [17] and SOSTOOLS [18], both available on
the net, and results on a sample of problems are in-
deed very encouraging and promising. Namely, for
most problems of the sample in [17], the optimal
value f∗ is actually obtained (up to the precision
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machine) at a SDP-relaxation of low order.
Finally, we also briefly describe LP-relaxations of

a similar algebraic flavor, initiated in the pioneering
work of Sherali and Adams [21, 22] for 0-1 programs,
and recently extended to general PP problems in [14]
by invoking a representation result of Krivine [9, 10].

2. Notation and preliminaries

Given any two real-valued symmetric matrices A,B
let 〈A,B〉 denote the usual scalar product trace(AB)
and let A º B (resp. A Â B) stand for A−B positive
semidefinite (resp. A−B positive definite). Let

[1, x1, x2, . . . xn, x2
1, x1x2, . . . , x

2
n, . . . ] (5)

be the canonical basis for the real polynomials, and
let Ar ⊂ R[x] := R[x1, . . . , xn] be the subspace of
real polynomials of degree at most r; denote s(r)
its dimension. Therefore, a polynomial f ∈ Ar is
written

x 7→ f(x) =
∑

α∈Nn

fα xα =
∑
α

fα xα1
1 · · ·xαn

n ,

x ∈ Rn, in the basis (5), for finitely many coefficients
{fα} such that |α| =

∑n
i=1 αi ≤ r. The polynomial

f ∈ Ar is also identified with its vector of coefficients
f ∈ Rs(r) in the canonical basis (5).

2.1 Moment matrix

Given a sequence y = {yα}, the moment matrix
Mr(y) ∈ Rs(r)×s(r) with rows and columns indexed
in (5), satisfies

[Mr(y)(1, j) = yα and Mr(y)(i, 1) = yβ]

=⇒ Mr(y)(i, j) = yα+β.

For instance, with n = 2, r = 2, and y =
{1, y10, y01, y20, y11, y02}, we have

M2(y) =




1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04




.

The matrix Mr(y) defines a bilinear form 〈., .〉y on
Ar, by

〈q, v〉y := 〈q,Mr(y)v〉, q, v ∈ Ar,

and if y has a representing measure µy (i.e., yα =∫
Rn xα dµy for all α ∈ Nn), then

〈q, Mr(y)q〉 =
∫

Rn

q(x)2 µy(dx) ≥ 0, (6)

so that Mr(y) º 0.

2.2 Localizing matrix

Given a polynomial θ ∈ R[x], with coefficient vector
θ, the localizing matrix Mr(θy) ∈ Rs(r)×s(r) associ-
ated with θ, is given by

Mr(θy)(i, j) =
∑

α∈Nn

θαyβ+α if Mr(y)(i, j) = yβ.

(7)
For instance with n = 2, r = 1, and x 7→ θ(x) :=
a− x2

1 − x2
2,

M1(θy) =




a− y20 − y02, ay10 − y30 − y12,
ay10 − y30 − y12, ay20 − y40 − y22,
ay01 − y21 − y03, ay11 − y31 − y13,

ay01 − y21 − y03

ay11 − y31 − y13

ay02 − y22 − y04


 .

If y is has a representing measure µy, then

〈q,Mr(θy)q〉 =
∫

Rn

θ(x)q(x)2 µy(dx), (8)

for every polynomial q ∈ Ar. Therefore, Mr(θy) º 0
whenever µy has its support contained in the set
Kθ = {x ∈ Rn | θ(x) ≥ 0} (i.e., µ(Rn \Kθ) = 0).

2.3 Putinar-Jacobi-Prestel representa-
tion theorem

The K-moment problem identifies those sequences
y = {yα} that have a representing measure whose
support is contained in a semi-algebraic set K. In
duality with the theory of moments is the theory of
representation of positive polynomials, which dates
back to Hilbert’s 17th problem. For details and
recent results, the interested reader is referred to
Berg [1], Curto and Fialkow [3], Jacobi and Prestel
[7], Putinar [19], Simon [24], Schmüdgen [20], and
the many references therein. Recall that a poly-
nomial f ∈ R[x] is a sum of squares (s.o.s.) if it
can be written f =

∑
j∈J f2

j for some finite family
{fj}j∈J ⊂ R[x].
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Assumption 1 Let {gi}m
i=1 ⊂ R[x] and let K ⊂ Rn

be as in (4). The set K is compact and there ex-
ists some u ∈ R[x] such that the level set {x ∈
Rn |u(x) ≥ 0} is compact, and u can be written as
u = u0 +

∑m
i=1 uigi, where ui ∈ R[x] is s.o.s. for

every i = 0, 1, . . . , m.

Note that Assumption 1 is not very restrictive. For
instance, it holds whenever K is a convex polytope,
or the level set {x ∈ Rn |gi(x) ≥ 0} is compact for
some i = 1, . . . ,m. In addition, if one knows in ad-
vance that a global minimizer of P is contained in
a ball of radius M , then for Assumption 1 to hold,
it suffices to include the additional quadratic con-
straint M2 − ‖x‖2 ≥ 0 in the definition (4) of K.
If Assumption 1 holds then one has the following
important representation:

[ f ∈ R[x], f > 0 on K ] ⇒ f = f0 +
m∑

i=1

fi gi,

(9)
where fi ∈ R[x] is s.o.s. for every i = 0, 1, . . . , m (see
e.g. Putinar [19]).

This representation (9) is a refinement of a more
general representation theorem called Schmüdgen’s
Positivstellensatz [20], in which products of the gi’s
would also appear in (9). Note that the representa-
tion (9) of f is an obvious certificate of positivity of
f on K. In addition, checking (9) with an a priori
bound on the degree of the fj ’s, reduces to solving a
SDP.

The dual (functional analysis) analogue of (the
algebraic) (9) is as follows: Let K be as in (4),
y = {yα} be an infinite sequence indexed in the basis
(5). Then under Assumption 1, there exists a rep-
resenting measure µ with support contained in K, if
and only if

Mr(y) º 0, Mr(giy) º 0, (10)

i = 1, . . . , m; r = 0, 1, . . . (again see Putinar [19]).
Checking (10) for a single r reduces to solving a SDP.

3. SDP-relaxations for polyno-
mial programming

Let f ∈ R[x], K be as in (4), and consider the
(global) optimization problem PP problem P in (3).

For every r ∈ N, write the moment and localizing
matrices Mr(y) and Mr(giy) in the respective forms∑

α yαBα, and
∑

α yαCi
α, for appropriate symmet-

ric matrices {Bα, Ci
α}. Depending on its parity, let

deg gi = 2vi or 2vi − 1 for all i = 1, . . . , m, whereas
deg f = 2v0 or 2v0−1, and set i0 := maxj∈{0,...,m} vj .
For r ≥ i0 define the SDP problem

Qr





min
y

∑
α

fαyα

s.t. Mr(y) º 0
Mr−vk

(gky) º 0, k = 1, . . . , m
y0 = 1

(11)
(which is a SDP-relaxation of P), whose dual SDP
problem reads

Q∗r





max
λ

λ

s.t. 〈X,Bα〉+
m∑

k=1

〈Zk, C
k
α〉 = fα,

∀α 6= 0

〈X,B0〉+
m∑

k=1

〈Zk, C
k
0 〉+ λ = f0

∀k ∈ {1, . . . , m} X, Zk º 0,

(12)
Introducing the constant polynomial g0 ≡ 1, every
SDP-relaxation Q∗r can be rephrased as

supQ∗r = max
λ∈R



λ | f − λ =

m∑

j=0

fj gj , fj is s.o.s.

and deg fjgj ≤ 2r, ∀j = 0, . . . , m} ,

whereas every SDP-relaxation Qr aims at finding a
measure µ that minimizes

∫
Rn f dµ under the con-

straints that
∫
Rn q2gk dµ ≥ 0 for all q ∈ Ar−vk

,
k = 1, . . . , m.

3.1 Convergence

Let inf Qr, supQ∗r be the respective optimal values
of the SDP Qr and Q∗r (writing min and max if the
optimal value is attained). Then supQ∗r ≤ inf Qr ≤
f∗ for all r ≥ i0, and under Assumption 1,

(a) inf Qr ↑ f∗ as r→∞.
(b) In addition, if K has nonempty interior, then

supQ∗r = maxQ∗r = inf Qr for all r ≥ i0.
(c) Remember that f−f∗ is only nonnegative (and

not strictly positive) on K. But if f − f∗ has the
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representation (9) then for some r0 ∈ N, supQ∗r =
maxQ∗r = minQr = f∗ for all r ≥ r0. That is, the
SDP-relaxations Qr are exact for all r ≥ r0.

For a detailed proof of (a)-(c) and more details, the
interested reader is referred to Lasserre [11]. Finally,
implemented in GloptiPoly [17], there is a sufficient
(rank) condition to detect whether inf Qr = f∗ at
some given relaxation Qr, and if so, a procedure to
retrieve a global minimizer x∗ ∈ K from an optimal
solution y∗ of Qr.

3.2 Global optimality conditions

Observe that when the representation (9) holds for
the polynomial f − f∗, nonnegative (but not strictly
positive) onK, then (9) is nothing less than the global
optimality conditions analogue for PP of the Karush-
Kuhn-Tucker (KKT) local optimality conditions for
NLP. Indeed, let x∗ ∈ K be a global minimizer, and
let f − f∗ have the representation (9), i.e.,

f − f∗ = f∗0 +
m∑

j=1

f∗j gj , (13)

for some s.o.s. polynomials {f∗j }m
j=0 ⊂ R[x]. Then

setting λj := f∗j (x∗) ≥ 0 for all j = 1, . . . , m,
(i) λjgj(x∗) = 0 for all j = 1, . . . , m (complemen-

tary slackness).
(ii) ∇f(x∗) =

∑n
j=1 λj∇gj(x∗), with λj =

f∗j (x∗) ≥ 0.
That is, (x∗, λ) ∈ Rn × Rm

+ is a KKT pair. Con-
versely, if (x∗, λ∗) ∈ Rn×Rm

+ is a KKT pair, and the
gradients {∇gj(x∗)} are linearly independent, then
f∗j (x∗) = λ∗j for all j = 1, . . . ,m.

So (13) is the nonconvex global optimality condi-
tion analogue of the KKT optimality condition in
the convex case, which states that

f − f∗ −
m∑

j=1

λ∗jgj ≥ 0,

and in which the scalar nonnegative multipliers {λ∗j}
are now replaced with s.o.s. polynomials {f∗j }.

3.3 Additional remarks

(i) As shown in the sample of problems solved with
the software GloptiPoly [17], most of the time, the

optimal value f∗ is obtained (up to numerical ma-
chine precision) at a SDP-relaxation Qr for some
small r.

(ii) Mixed integer programming MIP problems as
well as many discrete optimization problems are PP
problems. In particular, for (nonlinear) 0 − 1 pro-
grams (and more generally nonlinear integer pro-
grams) finite convergence is guaranteed (see, e.g.
Lasserre [12]). For instance, for the MAXCUT prob-
lem (minimize a quadratic form on {−1, 1}n), the
exact optimal value was almost always found at
the second relaxation (f∗ = minQ2), wehereas the
0.878minQ1 ≥ f∗ guarantee follows from Goemans
and Williamson [4] (for MAXCUT with nonnegative
weights).

(iii) Finally, let K be as in (4), and let ρ∗ =
minx∈K f(x)/q(x), where f, q ∈ R[x] are relatively
prime, and q does not change sign on K. (If q would
change sign on K then ρ∗ = −∞.) Then minimiz-
ing the rational function f/q on K is equivalent to
solving

min
µ

{ ∫

Rn

f dµ |
∫

q dµ = 1; µ(Rn \K) = 0
}

,

from which converging SDP-relaxations in the spirit
of the Qi’s can be built up easily (see de Klerk and
Jibetean [8] for a dual point of view). Note that with
q ≡ 1 one retrieves the PP problem (3).

3.4 LP-relaxations of P

Suppose that in (4), the polynomials {0, 1, {gi}m
i=1}

generate the R-algebra R[x1, . . . , xn], that is,
R[x1, . . . , xn] = R[g1, . . . , gm]. Assume also that the
gj ’s are normalized so that 0 ≤ gj ≤ 1 on K, for all
j = 1, . . . , m. Then one may also define a sequence
of LP-relaxations of P, whose associated sequence of
optimal values also converges to f∗. They are based
on an algebraic representation theorem of Krivine
[9, 10] (see also Vasilescu [26], and for a polytope K,
Cassier [2] and Handelman [5]), which states that

[ f > 0 on K ] ⇒ f =
∑

α,β∈Nm

cαβ

m∏

i=1

gαi
i

m∏

j=1

(1−gj)βj

(14)
for finitely many nonnegative scalar coefficients
{cαβ}.
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If one fixes an upper bound r on |α + β| =∑
i(αi + βi) in (14), then identifying the two poly-

nomials on both sides of the equality in (14), yields
a (finite) system of linear equalities on the nonnega-
tive coefficients {cαβ}. Therefore, the corresponding
LP-relaxation L∗r is the linear program

max
λ,cαβ



λ |f − λ =

∑

α,β∈Nn

cαβ

m∏

i=1

gαi
i

m∏

j=1

(1− gj)βj ;

{cαβ ≥ 0; |α + β| ≤ r} ,

which, for obvious reasons, is the LP-analogue of
the SDP-relaxation Q∗r. Similarly, the dual LP-
relaxation Lr, the analogue of the SDP-relaxation
Qr, can also be interpreted in the theory of mo-
ments. Indeed, stating that a measure µ has its sup-
port on K, can be done via countably many linear
conditions on its moments {yα}. These conditions
generalize to semi-algebraic sets the well-known lin-
ear Hausdorff-Bernstein conditions for the interval
[0, 1], and one has proved in Lasserre [13, 14] that
maxL∗r = minLr ↑ f∗ as r→∞. Finally, LP-
relaxations in the spirit of the above have been de-
fined in the pioneering work of Sherali and Adams
[21] for 0−1 nonlinear programs, in which they prove
finite convergence, as for the SDP-relaxations. See
also extensions in Sherali and Adams [22].

However, despite LP solvers can handle large size
problems (in contrast to present SDP solvers), these
LP-relaxations suffer some serious drawbacks ana-
lyzed in Lasserre [13, 14]. See also Laurent [15] for
a comparison of SDP and LP-relaxations for 0 − 1
programs.
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Sum of Squares Programs and
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1. Introduction

Consider a given system of polynomial equations and
inequalities, for instance:

f1(x1, x2) := x2
1 + x2

2 − 1 = 0,

g1(x1, x2) := 3x2 − x3
1 − 2 ≥ 0,

g2(x1, x2) := x1 − 8x3
2 ≥ 0.

(1)

How can one find real solutions (x1, x2)? How to
prove that they do not exist? And if the solution set
is nonempty, how to optimize a polynomial function
over this set?

Until a few years ago, the default answer to these
and similar questions would have been that the pos-
sible nonconvexity of the feasible set and/or objec-
tive function precludes any kind of analytic global
results. Even today, the methods of choice for most
practitioners would probably employ mostly local
techniques (Newton’s and its variations), possibly
complemented by a systematic search using deter-
ministic or stochastic exploration of the solution
space, interval analysis or branch and bound.

However, very recently there have been renewed
hopes for the efficient solution of specific instances
of this kind of problems. The main reason is the
appearance of methods that combine in a very in-
teresting fashion ideas from real algebraic geometry
and convex optimization [27, 30, 21]. As we will
see, these methods are based on the intimate links
between sum of squares decompositions for multi-
variate polynomials and semidefinite programming
(SDP).

In this note we outline the essential elements of
this new research approach as introduced in [30, 32],
and provide pointers to the literature. The center-
pieces will be the following two facts about multi-
variate polynomials and systems of polynomials in-
equalities:

Sum of squares decompositions can be com-
puted using semidefinite programming.
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The search for infeasibility certificates is a
convex problem. For bounded degree, it is
an SDP.

In the rest of this note, we define the basic ideas
needed to make the assertions above precise, and
explain the relationship with earlier techniques. For
this, we will introduce sum of squares polynomials
and the notion of sum of squares programs. We then
explain how to use them to provide infeasibility cer-
tificates for systems of polynomial inequalities, fi-
nally putting it all together via the surprising con-
nections with optimization.

On a related but different note, we mention a
growing body of work also aimed at the integration
of ideas from algebra and optimization, but centered
instead on integer programming and toric ideals; see
for instance [7, 42, 3] and the volume [1] as starting
points.

2. Sums of squares and SOS pro-
grams

Our notation is mostly standard. The monomial xα

associated to the n-tuple α = (α1, . . . , αn) has the
form xα1

1 . . . xαn
n , where αi ∈ N0. The degree of a

monomial xα is the nonnegative integer
∑n

i=1 αi. A
polynomial is a finite linear combination of monomi-
als

∑
α∈S cαxα, where the coefficients cα are real.

If all the monomials have the same degree d, we
will call the polynomial homogeneous of degree d.
We denote the ring of multivariate polynomials with
real coefficients in the indeterminates {x1, . . . , xn}
as R[x].

A multivariate polynomial is a sum of squares
(SOS) if it can be written as a sum of squares of
other polynomials, i.e.,

p(x) =
∑

i

q2
i (x), qi(x) ∈ R[x].

If p(x) is SOS then clearly p(x) ≥ 0 for all x. In
general, SOS decompositions are not unique.

Example 1 The polynomial p(x1, x2) = x2
1−x1x

2
2+

x4
2 + 1 is SOS. Among infinite others, it has the de-

compositions:

p(x1, x2) =
3
4
(x1 − x2

2)
2 +

1
4
(x1 + x2

2)
2 + 1

=
1
9
(3− x2

2)
2 +

2
3
x2

2 +

+
1

288
(9x1 − 16x2

2)
2 +

23
32

x2
1.

The sum of squares condition is a quite natural suf-
ficient test for polynomial nonnegativity. Its rich
mathematical structure has been analyzed in de-
tail in the past, notably by Reznick and his coau-
thors [6, 38], but until very recently the compu-
tational implications have not been fully explored.
In the last few years there have been some very
interesting new developments surrounding sums of
squares, where several independent approaches have
produced a wide array of results linking foundational
questions in algebra with computational possibili-
ties arising from convex optimization. Most of them
employ semidefinite programming (SDP) as the es-
sential computational tool. For completeness, we
present in the next paragraph a brief summary of
SDP.

Semidefinite programming SDP is a broad gen-
eralization of linear programming (LP), to the case
of symmetric matrices. Denoting by Sn the space of
n×n symmetric matrices, the standard SDP primal-
dual formulation is:

minX C •X s.t.
{

Ai •X = bi, i = 1, . . . , m
X º 0

maxy bT y, s.t.
∑m

i=1 Aiyi ¹ C,
(2)

where Ai, C, X ∈ Sn and b, y ∈ Rm. The matrix
inequalities are to be interpreted in the partial or-
der induced by the positive semidefinite cone, i.e.,
X º Y means that X − Y is a positive semidefinite
matrix. Since its appearance almost a decade ago
(related ideas, such as eigenvalue optimization, have
been around for decades) there has been a true “rev-
olution” in computational methods, supported by an
astonishing variety of applications. By now there are
several excellent introductions to SDP; among them
we mention the well-known work of Vandenberghe
and Boyd [44] as a wonderful survey of the basic the-
ory and initial applications, and the handbook [45]
for a comprehensive treatment of the many aspects
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of the subject. Other survey works, covering dif-
ferent complementary aspects are the early work by
Alizadeh [2], Goemans [15], as well as the more re-
cent ones due to Todd [43], De Klerk [9] and Laurent
and Rendl [25].

From SDP to SOS The main object of interest
in semidefinite programming is

quadratic forms, that are positive semidefi-
nite.

When attempting to generalize this construction to
homogeneous polynomials of higher degree, an un-
surmountable difficulty that appears is the fact that
deciding nonnegativity for quartic or higher degree
forms is an NP-hard problem. Therefore, a computa-
tional tractable replacement for this is the following:

even degree polynomials, that are sums of
squares.

Sum of squares programs can then be defined as
optimization problems over affine families of poly-
nomials, subject to SOS contraints. Like SDPs,
there are several possible equivalent descriptions.
We choose below a free variables formulation, to
highlight the analogy with the standard SDP dual
form discussed above.

Definition 1 A sum of squares program has the
form

maxy b1y1 + · · ·+ bmym

s.t. Pi(x, y) are SOS, i = 1, . . . , p,

where Pi(x, y) := Ci(x)+Ai1(x)y1 + · · ·+Aim(x)ym,
and the Ci, Aij are given polynomials in the variables
xi.

SOS programs are very useful, since they directly
operate with polynomials as their basic objects, thus
providing a quite natural modelling formulation for
many problems. Among others, examples for this
are the search for Lyapunov functions for nonlinear
systems [30, 28], probability inequalities [4], as well
as the relaxations in [30, 21] discussed below.

Interestingly enough, despite their apparently
greater generality, sum of squares programs are in
fact equivalent to SDPs. On the one hand, by choos-
ing the polynomials Ci(x), Aij(x) to be quadratic

forms, we recover standard SDP. On the other hand,
as we will see in the next section, it is possible to ex-
actly embed every SOS program into a larger SDP.
Nevertheless, the rich algebraic structure of SOS pro-
grams will allow us a much deeper understanding of
their special properties, as well as enable customized,
more efficient algorithms for their solution [26].

Furthermore, as illustrated in later sections, there
are numerous questions related to some foundational
issues in nonconvex optimization that have simple
and natural formulations as SOS programs.

SOS programs as SDPs Sum of squares pro-
grams can be written as SDPs. The reason is the
following theorem:

Theorem 1 A polynomial p(x) is SOS if and only
if p(x) = zT Qz, where z is a vector of monomials in
the xi variables, Q ∈ SN and Q º 0.

In other words, every SOS polynomial can be written
as a quadratic form in a set of monomials of cardi-
nality N , with the corresponding matrix being pos-
itive semidefinite. The vector of monomials z (and
therefore N) in general depends on the degree and
sparsity pattern of p(x). If p(x) has n variables and
total degree 2d, then z can always be chosen as a
subset of the set of monomials of degree less than or
equal to d, of cardinality N =

(
n+d

d

)
.

Example 2 Consider again the polynomial from
Example 1. It has the representation

p(x1, x2) =
1
6




1
x2

x2
2

x1




T 


6 0 −2 0
0 4 0 0

−2 0 6 −3
0 0 −3 6







1
x2

x2
2

x1




and the matrix in the expression above is positive
semidefinite.

In the representation f(x) = zT Qz, for the right-
and left-hand sides to be identical, all the coefficients
of the corresponding polynomials should be equal.
Since Q is simultaneously constrained by linear equa-
tions and a positive semidefiniteness condition, the
problem can be easily seen to be directly equivalent
to an SDP feasibility problem in the standard primal
form (2).
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Given a SOS program, we can use the theorem
above to construct an equivalent SDP. The conver-
sion step is fully algorithmic, and has been imple-
mented, for instance, in the SOSTOOLS [36] soft-
ware package. Therefore, we can in principle directly
apply all the available numerical methods for SDP
to solve SOS programs.

SOS and convexity The connection between sum
of squares decompositions and convexity can be
traced back to the work of N. Z. Shor [39]. In
this 1987 paper, he essentially outlined the links be-
tween Hilbert’s 17th problem and a class of convex
bounds for unconstrained polynomial optimization
problems. Unfortunately, the approach went mostly
unnoticed for several years, probably due to the lack
of the convenient framework of SDP.

3. Algebra and optimization

A central theme throughout convex optimization is
the idea of infeasibility certificates (for instance, in
LP via Farkas’ lemma), or equivalently, theorems of
the alternative. As we will see, the key link relating
algebra and optimization in this approach is the fact
that infeasibility can always be certified by a partic-
ular algebraic identity, whose solution is found via
convex optimization.

We explain some of the concrete results in The-
orem 5, after a brief introduction to two algebraic
concepts, and a comparison with three well-known
infeasibility certificates.

Ideals and cones For later reference, we define
here two important algebraic objects: the ideal and
the cone associated with a set of polynomials:

Definition 2 Given a set of multivariate polynomi-
als {f1, . . . , fm}, let

ideal(f1, . . . , fm) :=

{
f | f =

m∑

i=1

tifi, ti ∈ R[x]

}
.

Definition 3 Given a set of multivariate polynomi-

als {g1, . . . , gm}, let

cone(g1, . . . , gm) :=



g | g = s0 +

∑

{i}
sigi+

+
∑

{i,j}
sijgigj +

∑

{i,j,k}
sijkgigjgk + · · ·



 ,

where each term in the sum is a squarefree product
of the polynomials gi, with a coefficient sα ∈ R[x]
that is a sums of squares. The sum is finite, with a
total of 2m−1 terms, corresponding to the nonempty
subsets of {g1, . . . , gm}.

These algebraic objects will be used for deriving valid
inequalities, which are logical consequences of the
given constraints. Notice that by construction, every
polynomial in ideal(fi) vanishes in the solution set
of fi(x) = 0. Similarly, every element of cone(gi) is
clearly nonnegative on the feasible set of gi(x) ≥ 0.

The notions of ideal and cone as used above are
standard in real algebraic geometry; see for instance
[5]. In particular, the cones are also referred to as
a preorders. Notice that as geometric objects, ide-
als are affine sets, and cones are closed under convex
combinations and nonnegative scalings (i.e., they are
actually cones in the convex geometry sense). These
convexity properties, coupled with the relationships
between SDP and SOS, will be key for our develop-
ments in the next section.

Infeasibility certificates If a system of equations
does not have solutions, how do we prove this fact?
A very useful concept is that of certificates, which are
formal algebraic identities that provide irrefutable
evidence of the inexistence of solutions.

We briefly illustrate some well-known examples
below. The first two deal with linear systems and
polynomial equations over the complex numbers, re-
spectively.

Theorem 2 (Range/kernel)

Ax = b is infeasible
m

∃µ s.t. AT µ = 0, bT µ = −1.
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Theorem 3 (Hilbert’s Nullstellensatz) Let
fi(z), . . . , fm(z) be polynomials in complex variables
z1, . . . , zn. Then,

fi(z) = 0 (i = 1, . . . , m) is infeasible in Cn

m
−1 ∈ ideal(f1, . . . , fm).

Each of these theorems has an “easy” direction. For
instance, for the first case, given the multipliers µ
the infeasibility is obvious, since

Ax = b ⇒ µT Ax = µT b ⇒ 0 = −1,

which is clearly a contradiction.
The two theorems above deal only with the case

of equations. The inclusion of inequalities in the
problem formulation poses additional algebraic chal-
lenges, because we need to work on an ordered field.
In other words, we need to take into account spe-
cial properties of the reals, and not just the complex
numbers.

For the case of linear inequalities, LP duality pro-
vides the following characterization:

Theorem 4 (Farkas lemma)
{

Ax + b = 0
Cx + d ≥ 0

is infeasible

m

∃λ ≥ 0, µ s.t.
{

AT µ + CT λ = 0
bT µ + dT λ = −1.

Although not widely known in the optimization com-
munity until recently, it turns out that similar cer-
tificates do exist for arbitrary systems of polynomial
equations and inequalities over the reals. The result
essentially appears in this form in [5], and is due to
Stengle [40].

Theorem 5 (Positivstellensatz)
{

fi(x) = 0, (i = 1, . . . ,m)
gi(x) ≥ 0, (i = 1, . . . , p)

is infeasible in Rn if and only if

∃F (x), G(x) ∈ R[x]

such that




F (x) + G(x) = −1
F (x) ∈ ideal(f1, . . . , fm)
G(x) ∈ cone(g1, . . . , gp).

The theorem states that for every infeasible system
of polynomial equations and inequalities, there exists
a simple algebraic identity that directly certifies the
inexistence of real solutions. By construction, the
evaluation of the polynomial F (x) + G(x) at any
feasible point should produce a nonnegative number.
However, since this expression is identically equal
to the polynomial −1, we arrive at a contradiction.
Remarkably, the Positivstellensatz holds under no
assumptions whatsoever on the polynomials.

The use of the German word “Positivstellensatz”
is standard in the field, and parallels the classical
“Nullstellensatz” (roughly, “theorem of the zeros”)
obtained by Hilbert in 1901 and mentioned above.

In the worst case, the degree of the infeasibility
certificates F (x), G(x) could be high (of course, this
is to be expected, due to the NP-hardness of the
original question). In fact, there are a few explicit
counterexamples where large degree refutations are
necessary [16]. Nevertheless, for many problems of
practical interest, it is often the case that it is possi-
ble to prove infeasibility using relatively low-degree
certificates. There is significant numerical evidence
that this is the case, as indicated by the large num-
ber of practical applications where SDP relaxations
based on these techniques have provided solutions of
very high quality.

Of course, we are concerned with the effective
computation of these certificates. For the cases of
Theorems 2–4, the corresponding refutations can be
obtained using either linear algebra, linear program-
ming, or Groebner bases techniques (see [8] for a
superb introduction to Groebner bases).

For the Positivstellensatz, we notice that the cones
and ideals as defined above are always convex sets in
the space of polynomials. A key consequence is that
the conditions in Theorem 5 for a certificate to ex-
ist are therefore convex, regardless of any convexity
property of the original problem. Even more, the
same property holds if we consider only bounded-
degree sections, i.e., the intersection with the set of
polynomials of degree less than or equal to a given
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Degree \ Field Complex Real
Linear Range/Kernel Farkas Lemma

Linear Algebra Linear Programming
Polynomial Nullstellensatz Positivstellensatz

Bounded degree: Linear Algebra Bounded degree: SDP
Groebner bases

Table 1: Infeasibility certificates and associated computational techniques.

number D. In this case, the conditions in the P-satz
have exactly the form of a SOS program! Of course,
as discussed earlier, this implies that we can find
bounded-degree certificates, by solving semidefinite
programs. In Table 1 we present a summary of the
infeasibility certificates discussed, and the associated
computational techniques.

Example 3 Consider again the system (1). We will
show that it has no solutions (x1, x2) ∈ R2. By the
P-satz, the system is infeasible if and only if there ex-
ist polynomials t1, s0, s1, s2, s12 ∈ R[x1, x2] that sat-
isfy

f1 · t1︸ ︷︷ ︸
ideal(f1)

+ s0 + s1 · g1 + s2 · g2 + s12 · g1 · g2︸ ︷︷ ︸
cone(g1,g2)

≡ −1,

(3)
where s0, s1, s2, and s12 are SOS.

A SOS relaxation is obtained by looking for solu-
tions where all the terms in the left-hand side have
degree less than or equal to D. For each fixed integer
D > 0 this can be tested by semidefinite program-
ming. For instance, for D = 4 we find the certificate

t1 = −3x2
1 + x1 − 3x2

2 + 6x2 − 2,

s1 = 3, s2 = 1, s12 = 0,

s0 = 3x4
1 + 2x3

1 + 6x2
1x

2
2 − 6x2

1x2 − x2
1 − x1x

2
2+

+3x4
2 + 2x3

2 − x2
2 − 3x2 + 3

=
1
2

zT




6 −3 −3 0 0 −3
−3 4 2 0 1 1
−3 2 6 −2 0 −3

0 0 −2 4 −7 2
0 1 0 −7 18 0

−3 1 −3 2 0 6




z,

where

z =
[

1 x2 x2
2 x1 x1x2 x2

1

]T
.

The resulting identity (3) thus certifies the inconsis-
tency of the system {f1 = 0, g1 ≥ 0, g2 ≥ 0}.

As outlined in the preceding paragraphs, there is a
direct connection going from general polynomial op-
timization problems to SDP, via P-satz infeasibility
certificates. Pictorially, we have the following:

Polynomial systems
⇓

P-satz certificates
⇓

SOS programs
⇓

SDP

Even though we have discussed only feasibility prob-
lems, there are obvious straightforward connections
with optimization. By considering the emptiness of
the sublevel sets of the objective function, sequences
of converging bounds indexed by certificate degree
can be directly constructed.

4. Further developments and ap-
plications

We have covered only the core elements of the
SOS/SDP approach. Much more is known, and even
more still remains to be discovered, both in the theo-
retical and computational ends. Some specific issues
are discussed below.

Exploiting structure and numerical computa-
tion To what extent can the inherent structure in
SOS programs be exploited for efficient computa-
tions? Given the algebraic origins of the formula-
tion, it is perhaps not surprising to find that several
intrinsic properties of the input polynomials can be
profitably used, see [29]. In this direction, symmetry
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reduction techniques have been employed by Gater-
mann and Parrilo in [14] to provide novel representa-
tions for symmetric polynomials. Kojima, Kim and
Waki [20] have recently presented some results for
sparse polynomials. Parrilo [31] and Laurent [23]
have analyzed the further simplifications that oc-
cur when the inequality constraints define a zero-
dimensional ideal.

Other relaxations Lasserre [21, 22] has indepen-
dently introduced a scheme for polynomial optimiza-
tion dual to the one described here, but relying on
Putinar’s representation theorem for positive poly-
nomials rather than on the P-satz. There are very
interesting relationship between SOS-based methods
and earlier relaxation and approximation schemes,
such as Lovász-Schrijver and Sherali-Adams. Lau-
rent [24] analyzes this in the specific case of 0-1 pro-
gramming.

Implementations The software SOSTOOLS [36]
is a free, third-party MATLAB1 toolbox for formu-
lating and solving general sum of squares programs.
The related software GloptiPoly [17] is oriented to-
ward global optimization problems. In their current
version, both use the SDP solver SeDuMi [10] for
numerical computations.

Approximation properties There are several
important open questions regarding the provable
quality of the approximations. In this direction,
De Klerk and Pasechnik [11] have established some
approximations guarantees of a SOS-based scheme
for the approximation of the stability number of a
graph. Recently, De Klerk, Laurent, and Parrilo [10]
have shown that a related procedure based on a re-
sult by Pólya provides a polynomial-time approxi-
mation scheme (PTAS) for polynomial optimization
over simplices.

Applications There are many exciting applica-
tions of the ideas described here. The descriptions
that follow are necessarily brief; our main objective
here is to provide the reader with some good starting
points to this growing literature.

1A registered trademark of The MathWorks, Inc..

In systems and control theory, the techniques have
provided some of the best available analysis and de-
sign methods, in areas such as nonlinear stability and
robustness analysis [30, 28, 35], state feedback con-
trol [19], fixed-order controllers [18], nonlinear syn-
thesis [37], and model validation [34]. Also, there
have been interesting recent applications in geomet-
ric theorem proving [33] and quantum information
theory [12, 13].

Acknowledgments: The author would like to
thank Etienne de Klerk and Lúıs N. Vicente for their
helpful comments and suggestions.

REFERENCES

[1] K. Aardal and R. Thomas (editors), Algebraic and Geo-
metric Methods in Discrete Optimization, Math. Pro-
gram., 96 (2003).

[2] F. Alizadeh, Interior point methods in semidefinite pro-
gramming with applications to combinatorial opti-
mization, SIAM J. Optim., 5 (1995), pp. 13–51.

[3] D. Bertsimas, G. Perakis, and S. Tayur, A new algebraic
geometry algorithm for integer programming, Man-
agement Science, 46 (2000), pp. 999–1008.

[4] D. Bertsimas and I. Popescu, Optimal inequalities in
probability: A convex optimization approach, IN-
SEAD working paper, 1999-2001, available at
http://www.insead.edu/facultyresearch/tm/popescu.

[5] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic
Geometry, Springer-Verlag, Berlin, 1998.

[6] M. D. Choi, T. Y. Lam, and B. Reznick, Sums of squares
of real polynomials, Proceedings of Symposia in Pure
Mathematics, 58 (1995), pp. 103–126.

[7] P. Conti and C. Traverso, Buchberger algorithm and in-
teger programming, Applied algebra, algebraic al-
gorithms and error-correcting codes (New Orleans,
LA, 1991), Lecture Notes in Comput. Sci., vol. 539,
Springer-Verlag, Berlin, 1991, pp. 130–139.

[8] D. A. Cox, J. B. Little, and D. O’Shea, Ideals, varieties,
and algorithms: An introduction to computational al-
gebraic geometry and commutative algebra, Springer-
Verlag, Berlin, 1997.

[9] E. de Klerk, Aspects of semidefinite programming: Inte-
rior point algorithms and selected applications, Ap-
plied Optimization, vol. 65, Kluwer Academic Pub-
lishers, Dordercht, 2002.

[10] E. de Klerk, M. Laurent, and P. A. Parrilo, A PTAS for
the minimization of polynomials of fixed degree over
the simplex, submitted for publication, available at
http://www.mit.edu/~parrilo, 2004.

http://www.insead.edu/facultyresearch/tm/popescu
http://www.mit.edu/~parrilo


14 SIAG/OPT Views-and-News

[11] E. de Klerk and D. V. Pasechnik, Approximating the sta-
bility number of a graph via copositive programming,
SIAM J. Optim., 12 (2002), pp. 875–892.

[12] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri,
Distinguishing separable and entangled states, Phys.
Rev. Lett., 88 (2002), 187904.

[13] , Complete family of separability criteria, Phys.
Rev. A, (69) 2004, 022308.

[14] K. Gatermann and P. A. Parrilo, Symmetry groups,
semidefinite programs, and sums of squares, J. Pure
Appl. Algebra, 192 (2004), pp. 95–128.

[15] M. X. Goemans, Semidefinite programming in combina-
torial optimization, Math. Program., 79 (1997), pp.
143–161.

[16] D. Grigoriev and N. Vorobjov, Complexity of Null- and
Positivstellensatz proofs, Annals Pure Appl. Logic,
113 (2002), pp. 153–160.

[17] D. Henrion and J.-B. Lasserre, GloptiPoly
– global optimization over polynomials
with Matlab and SeDuMi, available from
http://www.laas.fr/~henrion/software/gloptipoly.
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Abstract: With the help of an inverted pendulum
example, we show how convex optimization over linear
matrix inequalities can be used to design a robust H∞
controller of fixed order, based on a purely algebraic ap-
proach and recent results on positive polynomials.

1. Introduction

The objective of this short note is to explain with the help
of a simple example how algebraic control techniques can
be combined with convex optimization to solve a poten-
tially difficult control problem. The focus here is mainly
on the numerical example, and the underlying theory is
described elsewhere. We apply the methodology proposed
in [4] and [5] to design a fixed-order robust controller mini-
mizing H∞ performance criteria for an inverted pendulum
system.

Numerical experiments were carried out with the help
of the Polynomial Toolbox 2.5 [8], the LMI interface

YALMIP 2.1 [6], and the semidefinite programming solver
SeDuMi 1.05 [10], under a Matlab 6.5 environment run-
ning on a Sun Solaris Sparc Blade 150 workstation.

2. Design with one measurement

1z

z2

u

Figure 1: Inverted pendulum system.

We consider the inverted pendulum setup of figure 1,
described in [7, Section 7], whose linearized transfer func-
tion from input u (dragging force) to output z1 (card po-
sition) is given by the rational function G(s) = G1(s) =
b1(s)/a(s) = 2(s2 − 10)/(s2(s2 − 20)) in the complex
Laplace variable s.

First we want to find a single-input-single-output
(SISO) robust linear control law u(s) = K1(s)e(s) with
K1(s) = y1(s)/x(s) such that pendulum position z1(s)
tracks a reference position z∗(s), according to the clas-
sical error feedback scheme e(s) = z∗(s) − z1(s). In the
H∞ setting, closed-loop robustness is ensured if the sen-
sitivity function S11(s) = 1/(1 + G1(s)K1(s)) and the
complementary sensitivity function T11(s) = 1 − S11(s)
have sufficiently small H∞ norms [3]. Recall that

‖S‖∞ = sup
s=jω, ω∈R

|S(s)|

denotes the peak value of the magnitude of rational trans-
fer function S evaluated along the imaginary axis. The
notation j, traditionally used in control systems engineer-
ing, refers to the imaginary unit j =

√−1. Physically,
a high value of ‖S‖∞ attained at some s∗ = jω∗ cor-
responds to a resonance peak at pulsation ω∗. Hence,
roughly speaking, minimizing the H∞ norm amounts to
removing resonance peaks as much as possible.

We formulate our SISO H∞ fixed-order controller de-
sign problem as follows: given plant polynomials1 a(s)
and b1(s) of degree n (the plant order), find controller

1All the polynomials in this note are real coefficient poly-
nomials of the complex Laplace variable s.
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polynomials x(s) and y1(s) of given degree m (the con-
troller order) such that

‖S11(s)‖∞ =
∥∥∥∥

a(s)x(s)
a(s)x(s) + b1(s)y1(s)

∥∥∥∥
∞
≤ MS11

where MS11 is a given upper bound. Here we do not en-
force an upper bound on the H∞ norm of T11(s). Practice
reveals that in this case, it will be minimized by side-effect
since S11(s) + T11(s) = 1.

3. Fixed-order controller design

In general, H∞ controller design is difficult as soon as the
order of the controller to be found is strictly less than the
order of the plant to be controlled. We are not aware of
any tractable numerical method to compute systemati-
cally such low-order H∞ controllers. In several applica-
tions such as embedded control systems for the aerospace
industry, low controller order is a fundamental require-
ment because it means easy and light implementation of
the control law.

In [4] and [5], results on positive polynomials were used
to come up with a linear matrix inequality (LMI) for-
mulation of fixed-order robust and H∞ controller design,
in the algebraic, or polynomial framework initiated in [2].
However, the LMI formulation is potentially conservative,
meaning that we have no guarantee to solve the fixed-
order controller design problem even if we know that a
solution exists. As explained in [4], the key ingredient
in the design procedure resides in the choice of a central
polynomial, or desired nominal closed-loop characteris-
tic polynomial. The name central polynomial is used to
emphasize the fact that this is a reference characteristic
polynomial around which design is carried out, see [4].
The main result of [5] can be summarized as follows.

Suppose that we are given a set of polynomials nk
i (s),

dk
i (s) as well as a set of positive real numbers γk for i, k =

1, 2, . . . We seek polynomials xi(s) of given degrees such
that

∥∥∥∥
∑

i nk
i (s)xi(s)∑

i dk
i (s)xi(s)

∥∥∥∥
∞

< γk, k = 1, 2, . . . (1)

Following [5], we define c(s) as a central polynomial of
the same degree δ as the polynomials

nk(s) = γ
∑

i

dk
i (s)xi(s) +

∑

i

nk
i (s)xi(s)

and

dk(s) = γ
∑

i

dk
i (s)xi(s)−

∑

i

nk
i (s)xi(s).

We also define the 2-by-2 polynomial matrices Nk(s) =
diag {nk(s), nk(s)}, Dk(s) = diag {dk(s), dk(s)}, C(s) =

[c(s) c(s); −c(s) c(s)] whose coefficient matrices, corre-
sponding to increasing powers of the variable s, are gath-
ered in the block matrices Nk, Dk, and C respectively.
Note that the matrices Nk and Dk are linear in the co-
efficients of the polynomials xi(s). With these notations,
results on positive polynomial matrices are invoked in [5]
to derive the following solution to the H∞ fixed-order
controller design problem.

Theorem 1 Given a central polynomial c(s), if the ma-
trix inequalities

(Nk)T C + CT Nk −H(P k
n ) Â 0,

(Dk)T C + CT Dk −H(P k
d ) Â 0, k = 1, 2, . . .

(2)

are feasible, then H∞ specifications (1) are met. This is
a convex LMI problem in the coefficients of polynomials
xi(s) and symmetric matrices P k

n and P k
d .

The central polynomial c(s) plays the role of a target
closed-loop characteristic polynomial around which the
design is carried out. Sensible strategies for the choice of
the central polynomial c(s) are discussed in [4] and [5].

4. Application to the inverted
pendulum problem

Suppose we are seeking a third-order (m = 3) con-
troller for our fourth-order (n = 4) inverted pendulum
plant described in Section 2.. Using results of Section
3., in order to derive an LMI formulation for this de-
sign problem, we must choose a suitable central polyno-
mial. Following rules of thumb explained in [4] and [5],
we found by an error-and-trial iterative procedure the fol-
lowing seventh-degree (n + m = 7) central polynomial
c(s) = (s + 20)(s + 10)(s + 3)2(s + 1)2(s + 0.01).

With the upper bound MS11 = 20 we solve LMI prob-
lem (2) to obtain the third degree controller polyno-
mials x(s) = −2441.0 − 929.36s + 17.699s2 + s3 and
y1(s) = −0.74001−32.610s+1110.4s2+349.23s3 yielding
‖S11(s)‖∞ = 14.610, ‖T11(s)‖∞ = 14.459.

Typical acceptable values for these H∞ norms are be-
tween 1 and 2 (see [3]), so we are very far from a sensi-
ble robust design. It can be checked that the system re-
sponse features unacceptable undershoot and overshoot
which would probably exceed physical capabilities of the
plant. This could be expected. Indeed, as pointed out
in [7], the open-loop system is both unstable and non-
minimum phase, and the unstable zero occurs at a lower
frequency than the unstable pole. It means that any sta-
bilizing controller that can be designed for this plant will
have very poor performance and robustness properties.
As pointed out in [7], it is easy to gain some appreciation
of the difficulty of the control problem when only the
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pendulum position z1 is measured, by trying to balance a
broom with both eyes shut.

5. Design with two measurements

In order to improve closed-loop performance and robust-
ness, we consider in this section that the angle z2 of the
pendulum is also measured and available for feedback,
along with the pendulum position z1. Therefore we will
have to solve a single-input-multi-output (SIMO) design
problem.

Let G(s) = [G1(s); G2(s)] denote the SIMO open-loop
transfer function, where G1(s), as previously, is the trans-
fer function from u(s) to z1(s), and G2(s) = b2(s)/a(s) =
−2s2/(s2(s2 − 20)) is the transfer function from u(s) to
z2(s).

As in [7] we consider the feedback configuration
u(s) = K1(s)e(s) − K2(s)z2(s), with e(s) = z∗(s) −
z(s). The feedback matrix K(s) = [K1(s) K2(s)] con-
sists of K1(s) = y1(s)/x(s) as previously and K2(s) =
y2(s)/x(s). The 2-by-2 sensitivity functions are now given
by S(s) = (I + G(s)K(s))−1 and T (s) = I − S(s). Let
Sij(s) and Tij(s) denote entries (i, j) in S(s) and T (s),
respectively.

We formulate our SIMO H∞ design problem as follows:
given plant polynomials a(s), b1(s), and b2(s) of degree n,
find controller polynomials x(s), y1(s), and y2(s) of given
degree m such that

‖T11(s)‖∞ = ‖ b1(s)y1(s)
a(s)x(s)+b1(s)y1(s)+b2(s)y2(s)

‖∞ ≤ MT11 ,

‖T22(s)‖∞ = ‖ b2(s)y2(s)
a(s)x(s)+b1(s)y1(s)+b2(s)y2(s)

‖∞ ≤ MT22 ,

where MT11 and MT22 are given upper bounds.
Suppose we are seeking a second-order (m = 2) con-

troller. After various trials consisting in decreasing the
upper bounds while moving apart the roots of the cen-
tral polynomial, we come up with the central polyno-
mial c(s) = (s + 20)2(s + 1)2(s + 0.1)2 and the upper
bounds MT11 = 2 and MT22 = 3. We refer the inter-
ested reader to [4] for a description of this heuristic itera-
tive procedure. Upon solving LMI problem (2) we obtain
the second degree controller polynomials x(s) = 116.35+
145.90s + s2, y1(s) = −1.6205 − 33.693s − 38.843s2,
and y2(s) = −1918.5 − 2764.9s − 496.12s2, yielding
‖S11(s)‖∞ = 1.1050 and ‖T11(s)‖∞ = 1.1419.

Comparing to the results of the previous section, the
improvement brought by the second measurement is sig-
nificant, since the H∞ norms of sensitivity and comple-
mentary sensitivity functions are now significantly less
than 2 with our second-order controller. A comparable
performance was achieved in [7] with a more complicated
fourth-order controller.

6. Conclusion

In this note we have applied the polynomial/LMI ap-
proach described in [4] and [5] to design a fixed-order ro-
bust controller satisfying H∞ performance specifications
for an inverted pendulum system.

A promising research direction is the study of nu-
merical properties (computational complexity, numerical
stability) of algorithms tailored to solve LMI problems
coming from polynomial positivity conditions. As shown
in [1], the Hankel or Toeplitz structure can be exploited
to design fast algorithms to solve Newton steps in barrier
schemes and interior-point algorithms. Numerical stabil-
ity is also a concern, since it is well-known for example
that Hankel matrices are exponentially ill-conditioned.
Alternative polynomial bases such as Chebyshev or Bern-
stein polynomials may prove useful.
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1. Workshop Announcements

Eighth SIAM Conference on Optimization
Sunday to Wednesday, May 15-18, 2005,

Stockholm, Sweden
http://www.siam.org/meetings/op05

The Eighth SIAM Conference on Optimization, spon-
sored by the SIAM Activity Group on Optimization, will
feature the latest research in theory, algorithms, and ap-
plications in optimization problems. In particular, it will
emphasize large-scale problems and will feature impor-
tant applications in networks, manufacturing, medicine,
biology, finance, aeronautics, control, operations research,
and other areas of science and engineering. The con-
ference brings together mathematicians, operations re-
searchers, computer scientists, engineers, and software
developers; thus it provides an excellent opportunity for
sharing ideas and problems among specialists and users
of optimization in academia, government, and industry.

The themes of the conference include, but are not lim-
ited to: large-scale nonlinear programming; large-scale
linear programming; simulation-based optimization; op-
timization in medicine and biology; stochastic program-
ming; optimization in finance; semidefinite programming;
computational optimization frameworks.

The organizing committee is formed by 12 members
and co-chaired by A. Forsgren (Royal Institute of Tech-
nology, Sweden) and H. Wolkowicz (University of Water-
loo).

The invited plenary speakers are: D. Bienstock
(Columbia University), M. C. Ferris (University of
Wisconsin), O. Ghattas (Carnegie Mellon University),
J. Gondzio (University of Edinburgh), M. Kojima (Tokyo
Institute of Technology), M. Laurent (CWI, The Nether-
lands), A. Shapiro (Georgia Institute of Technology), and
A. Sofer (George Mason University).

A number of minisymposia have already been submit-
ted, in topics like:

• Advances in Large Sparse Nonlinear Programming.

• Applications in Finance.

• Applications in Medicine and Biology.

• Computational Biology.

• Applications in VLSI Design.

• Complementarity Problems.

• Derivative-Free Optimization.

• Optimization in Aerospace Engineering.

• Implementation and Robustness for Interior-Point
Methods.

• Interior-Point Methods for Very Large Problems.

• Multidisciplinary Optimization.

• Network Optimization.

• Nonlinear Semidefinite Programming

• Progress in Nonlinear Optimization and Filter Meth-
ods.

• Simulation Based Design Optimization.

Workshop on Optimization in Finance
July 5-9, 2005, International Center for Mathematics,

University of Coimbra, Portugal
http://www.mat.uc.pt/tt2005/of

Optimization models and methods play an increasingly
important role in financial decision making. Many prob-
lems in quantitative finance, originated from asset allo-
cation, risk management, derivative pricing, and model
fitting, are now routinely and efficiently solved using mod-
ern optimization techniques. This workshop will bring to-
gether researchers in the rapidly growing field of financial
optimization and intends to provide a forum for innova-
tive models and methods on new topics, novel approaches
to well-known problems, success stories, and computa-
tional studies in this exciting field. Participants are en-
couraged to present and discuss their recent work and
new, possibly controversial, approaches are particularly
welcome.

The targeted audience for this workshop includes grad-
uate students and faculty members working in applied
mathematics, operations research, and economics, who
have been interested in mathematical finance or plan to
do so. The workshop will also be attractive for those
doing quantitative modeling in the financial market.

A one-day short-course, intended for optimization re-
searchers interested in quantitative finance as well as fi-
nance researchers and practitioners interested in opti-
mization models and methods, will precede the scientific
program of the workshop. Invited and contributed pre-
sentations will be scheduled during the remaining three
days.

The invited plenary speakers are: J. R. Birge (Uni-
versity of Chicago), T. F. Coleman (Cornell Univer-
sity), H. Konno (Chuo University, Japan), J. M. Mul-
vey (Princeton University), R. T. Rockafellar (Univer-
sity of Washington), N. Touzi (CREST, France), and
S. A. Zenios (University of Cyprus). The short course

http://www.siam.org/meetings/op05
http://www.mat.uc.pt/tt2005/of
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is given by R. H. Tütüncü (Carnegie Mellon University)
and S. Uryasev (University of Florida).

Summer School on Geometric and Algebraic
Approaches for Integer Programming

July 11–15, 2005, International Center for Mathematics,
University of Lisbon, Portugal

http://www.mat.uc.pt/tt2005/ss

The School is composed by five set of lectures, designed
to introduce young researchers to the more recent ad-
vances on geometric and algebraic approaches for integer
programming. Each set of lectures will be about six hours
long. They will provide the background, introduce the
theme, describe the state-of-the-art, and suggest practi-
cal exercises. The organizers will try to provide a relaxed
atmosphere with enough time for discussion.

Integer programming is a field of optimization with rec-
ognized scientific and economical relevance. The usual
approach to solve integer programming problems is to
use linear programming within a branch-and-bound or
branch-and-cut framework, using whenever possible poly-
hedral results about the set of feasible solutions. Alter-
native algebraic and geometric approaches have recently
emerged that show great promise. In particular, poly-
nomial algorithms for solving integer programs in fixed
dimension have recently been developed. This is a hot
topic of international research, and the School will be an
opportunity to bring up-to-date knowledge to young re-
searchers.

The School is composed by five lectures, designed to
introduce young researchers to the more recent advances
on geometric and algebraic approaches for integer pro-
gramming. Each lecture will be about three hours long.
They will provide the background, introduce the theme,
describe the state-of-the-art, and suggest practical exer-
cises. The organizers will try to provide a relaxed atmo-
sphere with enough time for discussion.

The invited lecturers are: A. Barvinok (University of
Michigan), G. Cornuéjols (Carnegie Mellon University),
F. Eisenbrand (Max-Planck-Institut), J. de Loera (Uni-
versity of California, Davis), and R. Weismantel (Otto-
von-Guericke Univ. Magdeburg).

22nd IFIP TC 7 Conference
on

System Modeling and Optimization
July 18-22, 2005, Turin, Italy

http://www2.polito.it/eventi/ifip2005

The themes of the conference are mathematical models
methods and algorithms in optimization, identification,
simulation and their applications:

• Optimization; optimization with PDE constraints;
structural systems optimization; algorithms for lin-
ear and nonlinear programming; stochastic opti-
mization; control and game theory; combinatorial
and discrete optimization.

• Identification and inverse problems; fault detection;
shape identification.

• Complex systems; stability and sensitivity analysis;
neural networks; fractal and chaos; reliability.

• Computational techniques in distributed systems
and in information processing environments; trans-
mission of information in complex systems; data
base design.

• Applications of optimization techniques and of com-
putational methods to scientific and technological
areas (such as medicine, biology, economics, fi-
nances, aerospace and aeronautics, etc.).

The invited plenary speakers are: R. Fletcher (Univer-
sity of Dundee), A. Forsgren (Royal Institute of Technol-
ogy, Sweden), D. M. Frangopol (University of Colorado),
W. Hager (University of Florida), J. Mayer (University of
Zurich), J. Nocedal (Northwestern University), A. Quar-
teroni (EPFL, Switzerland), H. M. Soner (Koc Univer-
sity, Turkey), G. Uhlmann (University of Washington),
and R. Zecchina (ICTP, Italy).

Workshop on Optimization in Medicine
July 20-22, 2005, International Center for Mathematics,

University of Coimbra, Portugal
http://www.mat.uc.pt/tt2005/om

The study of computing in medical applications has
opened many challenging issues and problems for both
the medical computing and mathematical communities.
This workshop is intended to foster communication and
collaboration between researchers in the medical comput-
ing community and researchers working in applied math-
ematics and optimization.

Mathematical techniques (continuous and discrete) are
playing a key role with increasingly importance in under-
standing several fundamental problems in medicine.

For instance, mathematical theory of nonlinear dynam-
ics and discrete optimization has been used to predict
epileptic seizures. Next to stroke, epilepsy is among the
most common disorders of the nervous system. Measures
derived from the theory of nonlinear dynamics and dis-
crete optimization techniques are used for prediction of
impending epileptic seizures from analysis of multielec-
trode electroencephalographic (EEG) data.

Several examples of the use of mathematics in medicine
can be found in recent cancer research. Sophisticated

http://www.mat.uc.pt/tt2005/ss
http://www2.polito.it/eventi/ifip2005
http://www.mat.uc.pt/tt2005/om
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mathematical models and algorithms have been used for
generating treatment plans for radionuclide implant and
external beam radiation therapy. With Gamma Knife
treatment, for example, optimization techniques have
been used to automate the treatment planning process.

Optimization has been used to address a variety of
medical image registration problems. In particular, spe-
cialized mathematical programming techniques have been
used in a variety of domains including the rigid alignment
of primate autoradiographs and the non-rigid registration
of cortical anatomical structures as seen in MRI.

The invited presentations will be complemented by
sessions of contributed talks. The invited plenary
speakers are: M. C. Ferris (University of Wiscon-
sin), H. W. Hamacher (University of Kaiserslautern),
L. D. Iasemidis (Arizona State University), J. P. Kaipio
(University of Kuopio), E. K. Lee (Georgia Institute of
Technology), and A. Rangarajan (University of Florida).

Workshop on PDE Constrained Optimization
July 26-29, 2005, International Center for Mathematics,

Tomar, Portugal
http://www.mat.uc.pt/tt2005/pde

Optimization problems governed by partial differential
equation (PDE) constraints arise in many important ap-
plications. Progress in computational and applied math-
ematics combined with the availability of rapidly increas-
ing computer power steadily enlarges the range of applica-
tions that can be simulated numerically and for which op-
timization tasks, such as optimal design, parameter iden-
tification, and control are being considered. For most of
these optimization problems, simple approaches combin-
ing off-the-shelf PDE solvers and optimization algorithms
often lack robustness or can be very inefficient.

Successful solution approaches have to overcome chal-
lenges arising from, e.g., the increasing complexity of ap-
plications and their mathematical models, the influence
of the underlying infinite dimensional problem structure
on optimization algorithms, and the interaction of PDE
discretization and optimization.

This workshop will combine a wide range of topics im-
portant to PDE constrained optimization in an integrated
approach, fusing techniques from a number of mathemat-
ical disciplines including functional analysis, optimal con-
trol theory, numerical optimization, numerical PDEs, and
numerical analysis and application specific structures.

A short course will be offered on the first day of the
workshop by F. Tröltzsch (Technical University of Berlin)
and M. Heinkenschloss (Rice University).

Invited and contributed presentations will be sched-
uled during the remaining three days. The invited ple-
nary speakers are: M. D. Gunzburger (Florida State
University), R. H. W. Hoppe (University of Augsburg),

K. Kunisch (University of Graz), G. Leugering (Univ.
Erlangen-Nrnb.), A. T. Patera (MIT), R. Rannacher
(University of Heidelberg), and E. W. Sachs (University
of Trier).

2. Other Announcements

SIAM Activity Group on Optimization Prize
CALL FOR NOMINATIONS

The SIAM Activity Group on Optimization Prize
(SIAG/OPT Prize) will be awarded at the SIAM Con-
ference on Optimization to be held May 15-18, 2005, in
Stockholm, Sweden.

The SIAG/OPT Prize, established in 1992, is awarded
to the author(s) of the most outstanding paper, as de-
termined by the prize committee, on a topic in optimiza-
tion published in English in a peer-reviewed journal. The
award period is the four calendar years preceding the year
of the conference.

Eligibility

Candidate papers must be published in English in a
peer-reviewed journal bearing a publication date within
the award period. Thus, to be eligible for the prize, a pa-
per must appear with a publication date in the 2001-2004
calendar years. Candidate papers must contain signif-
icant research contributions to the field of optimization,
as commonly defined in the mathematical literature, with
direct or potential applications.

Description of the Award

The award will consist of a plaque and a certificate
containing the citation. At least one of the prize recipients
is expected to attend the award ceremony and to present
the paper at the conference.

Nominations

A letter of nomination, including a citation of the
paper, should be sent by January 15, 2005, to:

SIAM Activity Group on Optimization Prize
Professor Robert Vanderbei, Chair
c/o J. M. Littleton
SIAM
3600 University City Science Center
Philadelphia, PA 19104-2688
USA

E-mail: littleton@siam.org
Telephone: 215-382-9800
Fax: 215-386-7999

http://www.mat.uc.pt/tt2005/pde
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Selection Committee

The members of the selection committee are: Robert
Vanderbei (chair), Princeton University; Aharon Ben-
Tal, Technion; Adrian Lewis, Simon Fraser University;
S. Thomas McCormick, University of British Columbia;
and Yinyu Ye, Stanford University.

COAP 2003 Best Paper Award

The journal, Computational Optimization and Ap-
plications (COAP), has announced that Jeff Linderoth,
Lehigh University, and Stephen Wright, University of
Wisconsin-Madison, have won the COAP 2003 Best Pa-
per Award for Decomposition Algorithms for Stochas-
tic Programming on a Computational Grid, published in
COAP, Volume 24, pp. 207-250. This paper demon-
strates the vast potential of harnessing the computa-
tional capabilities of the millions of processors connected
through the internet. Using over one thousand comput-
ers spread across the United States and in Europe, the
authors describe how they solved many challenging prob-
lems. In one case, they solve a flight mobilization model
involving billions of decisions in just over a day when con-
ventional computing would have required over a year. To
achieve these results, they provide new solution methods
that work asynchronously and fit the heterogeneous, dy-
namic, and unreliable computing environment of widely
dispersed machines that exists today. Their work pro-
vides a solid platform for further developments in exploit-
ing the power of the computational grid.

Special Issue of ETNA
on

Saddle Point Problems:
Numerical Solution and Applications

The journal Electronic Transactions on Numerical
Analysis (ETNA) will devote a special issue to the so-
lution of saddle point problems. These problems arise in
systems of PDEs with conservation laws (including Stokes
and Navier-Stokes equations, incompressible linear elas-
ticity, magnetostatics, etc.), in constrained optimization
problems, in generalized least squares problems, and else-
where. Such problems pervade computational science and
engineering, and their efficient numerical solution is of
paramount importance. However, to compute accurate
solutions to saddle point problems at a reasonable cost
has proved difficult. As a consequence, a significant ef-
fort has been devoted to define proper formulations, (sta-
bilized) discretizations, and fast solution methods for dis-
cretized saddle point problems and their generalizations.

The present issue aims to attract papers on the contin-
uous and discrete formulation of saddle point problems

in all aspects of computational science, both for specific
problems and in general, and on efficient solution tech-
niques for the resulting systems of equations. Papers de-
scribing novel applications leading to saddle point prob-
lems are also of interest.

Manuscripts should be submitted electronically to one
of the special issue editors listed below. The deadline for
submission of papers is December 15, 2004. All submis-
sions will undergo the standard refereeing process used
for regular ETNA papers. The issue is expected to ap-
pear by the end of 2005. For more information on ETNA,
see the web site http://etna.mcs.kent.edu.

If you have any questions, please contact the editors of
the special issue:

Michele Benzi (benzi@mathcs.emory.edu),
Richard B. Lehoucq (rblehou@sandia.gov),
Eric de Sturler (sturler@cs.uiuc.edu).

http://etna.mcs.kent.edu
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Chairman’s Column

This is my first column for Views-and-News as the
Chair of SIAG/OPT. I am honored to have been elected,
and along with the other newly-elected board members
(Vice Chair Bob Vanderbei, Program Director Sven Leyf-
fer and Secretary/Treasurer Kees Roos) look forward to
serving the organization. I am delighted to report that
Lúıs Vicente has agreed to continue as the editor of
SIAG/Optimization Views-and-News, having taken over
that position following the tragic death of Jos Sturm last
year.

I would first like to thank our former Chair Henry
Wolkowicz and the other outgoing board members (Vice
Chair Philippe Toint, Program Director Anders Fors-
gren and Secretary/Treasurer Natalia Alexandrov) for the
outstanding leadership they have provided over the past
three years. SIAG/OPT is particularly indebted to Na-
talia for her work maintaining the Activity Group’s web
site. This responsibility has recently been taken over by
Sven Leyffer, and the SIAG/OPT home page is now at
the URL http://www.mcs.anl.gov/~leyffer/siagopt.

Henry and Anders have left their board responsibili-
ties behind, but are now very busy as Co-Chairs of the
Organizing Committee for the 8th SIAM Conference on
Optimization to be held in Stockholm, Sweden on May
15-18, 2005. The triennial SIOPT conference is now well
established as one of the foremost international meetings
on optimization. This year’s meeting locale is an appro-
priate indicator of the very international make-up of our
organization — over 1/3 of the members of SIAG/OPT
are outside of the USA. The meeting combines an out-
standing technical program with a beautiful location and
should be well attended by SIAG/OPT members and non-
members alike.

We all know that optimization has many important
applications in business, engineering, logistics, medicine,
economics and other areas. In recent years there have
also been some very significant, but perhaps less well-
known, applications in the solution of long-open problems
in mathematics. One such application that I would like to
briefly describe is the solution of the well-known Kepler
conjecture by Thomas Hales and his student Sam Fergu-
son, first announced in 1998. Kepler’s conjecture, which
dates to the early 17th century, asserts that the densest
packing of equal-sized spheres in three-dimensional space
is achieved by the “hexagonal close packing” (HCP),
corresponding to how oranges are stacked in a grocery
store (or, of some historical importance, cannonballs are
stacked on the deck of a ship). A nicely written account of
the history of the Kepler conjecture, including a descrip-
tion of Hales’ proof, is in the book Kepler’s Conjecture by

George Szpiro, Wiley, 2003. Chapter 13 of Szpiro’s book
is entitled “Simplex, Cplex, and Symbolic Mathematics”
The first sentence in the chapter reads “The proof of Ke-
pler’s conjecture is basically an optimization problem,”
and a few pages later the following paragraph appears:

“A typical example of Hales and Ferguson’s
problem had between one hundred and two
hundred variables, and between one thousand
and two thousand constraints. The variables
in the linear programs were angles, volumes,
and distances. The constraints expressed the
conditions on lengths and angles so that only
those packings that could actually exist were
considered. Nearly one hundred thousand such
problems had to be solved in the proof. In 98
percent of the five thousand nets that Hales in-
vestigated, that method worked.”

Szpiro goes on to explain that in more difficult cases
Hales and Ferguson had to resort to mixed-integer prob-
lems so as to obtain tighter bounds on the maximum
“score” attainable by a given geometric configuration. By
eventually showing that no configuration corresponding
to a packing could attain a score higher than that attained
by the HCP, Hales and Ferguson proved Kepler’s con-
jecture. Hales’ approach to the problem includes many
novel ideas and complex details, but it is obvious that
without the availability of fast, reliable software for lin-
ear and mixed-integer programming (in this case CPLEX)
the proof attempt would have failed. For a more detailed
description of Hales’ approach see the article Bounds for
the local density of sphere packings and the Kepler con-
jecture by Jeff Lagarias, Discrete and Computational Ge-
ometry, 27 (2002), pp. 165–193.

The Hales and Ferguson proof is still considered con-
troversial due to the enormous amount of computation
involved. The situation is not unlike that of the first proof
of the four-color theorem, by Appel and Haken in 1976.
The Appel-Haken proof involved so much computation
that it is believed to have never been independently veri-
fied. However, a conceptually similar but greatly simpli-
fied proof by Robertson, Sanders, Seymour and Thomas,
announced in 1995, reduces the computation required to
the point that the proof can be relatively easily checked.
It is entirely possible that a simpler proof of Kepler’s con-
jecture will be found in years to come, but in all likelihood
the proof will continue to build on optimization as a cor-
nerstone.

Kurt M. Anstreicher, SIAG/OPT Chair
Department of Management Sciences
University of Iowa
S210 PBB Iowa City, IA 52242,
USA

http://www.mcs.anl.gov/~leyffer/siagopt
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kurt-anstreicher@uiowa.edu
http://www.biz.uiowa.edu/faculty/anstreicher

Comments from the Editor

This issue of the SIAG/Optimization Views-and-News
contains three expository articles about polynomial op-
timization problems, in particular sum of squares pro-
grams, and their relaxations via semidefinite program-
ming. I was very pleased to work with the guest editor,
Etienne de Klerk, who had been invited by Jos Sturm to
edit such a issue. I would like to thank the authors for
their (non trivial) efforts in presenting technical material
in a form accessible to the whole SIAG/OPT community.

I take this opportunity, once again, to ask for contribu-
tions like expository articles on interesting topics (ranging

from applications or case studies to theory or software),
announcements of awards and events, and book and soft-
ware releases.

I cannot possibly miss this chance to wish a successful
term to our new board members, Kurt Anstreicher, Bob
Vanderbei, Sven Leyffer, and Kees Roos.

Lúıs N. Vicente, Editor
Department of Mathematics
University of Coimbra
3001-454 Coimbra
Portugal
lnv@mat.uc.pt
http://www.mat.uc.pt/~lnv

http://www.biz.uiowa.edu/faculty/anstreicher
http://www.mat.uc.pt/~lnv
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